Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
BMC Public Health ; 24(1): 1088, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641571

RESUMO

BACKGROUND: Estimating rates of disease importation by travellers is a key activity to assess both the risk to a country from an infectious disease emerging elsewhere in the world and the effectiveness of border measures. We describe a model used to estimate the number of travellers infected with SARS-CoV-2 into Canadian airports in 2021, and assess the impact of pre-departure testing requirements on importation risk. METHODS: A mathematical model estimated the number of essential and non-essential air travellers infected with SARS-CoV-2, with the latter requiring a negative pre-departure test result. The number of travellers arriving infected (i.e. imported cases) depended on air travel volumes, SARS-CoV-2 exposure risk in the departure country, prior infection or vaccine acquired immunity, and, for non-essential travellers, screening from pre-departure molecular testing. Importation risk was estimated weekly from July to November 2021 as the number of imported cases and percent positivity (PP; i.e. imported cases normalised by travel volume). The impact of pre-departure testing was assessed by comparing three scenarios: baseline (pre-departure testing of all non-essential travellers; most probable importation risk given the pre-departure testing requirements), counterfactual scenario 1 (no pre-departure testing of fully vaccinated non-essential travellers), and counterfactual scenario 2 (no pre-departure testing of non-essential travellers). RESULTS: In the baseline scenario, weekly imported cases and PP varied over time, ranging from 145 to 539 cases and 0.15 to 0.28%, respectively. Most cases arrived from the USA, Mexico, the United Kingdom, and France. While modelling suggested that essential travellers had a higher weekly PP (0.37 - 0.65%) than non-essential travellers (0.12 - 0.24%), they contributed fewer weekly cases (62 - 154) than non-essential travellers (84 - 398 per week) given their lower travel volume. Pre-departure testing was estimated to reduce imported cases by one third (counterfactual scenario 1) to one half (counterfactual scenario 2). CONCLUSIONS: The model results highlighted the weekly variation in importation by traveller group (e.g., reason for travel and country of departure) and enabled a framework for measuring the impact of pre-departure testing requirements. Quantifying the contributors of importation risk through mathematical simulation can support the design of appropriate public health policy on border measures.


Assuntos
Viagem Aérea , COVID-19 , Humanos , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Canadá/epidemiologia , Viagem , França
2.
BMC Public Health ; 24(1): 867, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509528

RESUMO

BACKGROUND: The number of Lyme disease risk areas in Canada is growing. In regions with emerging tick populations, it is important to emphasize peridomestic risk and the importance of protective behaviours in local public health communication. This study aims to identify characteristics associated with high levels of Lyme disease knowledge and adoption of protective behaviours among residents in the Ottawa, Ontario region. METHODS: A geographically stratified web survey was conducted in November 2020 (n = 2018) to determine knowledge, attitudes, and practices regarding Lyme disease among adult residents. Responses were used to calculate: (i) composite scores for knowledge and adoption of protective practices; and (ii) an exposure risk index based on reported activity in woodlands during the spring-to-fall tick exposure risk period. RESULTS: 60% of respondents had a high knowledge of Lyme disease, yet only 14% indicated they often use five or more measures to protect themselves. Factors strongly associated with a high level of Lyme disease knowledge included being 55 or older (Odds Ratio (OR) = 2.04), living on a property with a yard (OR = 3.22), having a high exposure index (OR = 1.59), and knowing someone previously infected with Lyme disease (OR = 2.05). Strong associations with the adoption of a high number of protective behaviours were observed with membership in a non-Indigenous racialized group (OR = 1.70), living on a property with a yard (OR = 2.37), previous infection with Lyme disease (OR = 2.13), prior tick bite exposure (OR = 1.62), and primarily occupational activity in wooded areas (OR = 2.31). CONCLUSIONS: This study highlights the dynamics between Lyme disease knowledge, patterns of exposure risk awareness, and vigilance of personal protection in a Canadian region with emerging Lyme disease risk. Notably, this study identified gaps between perceived local risk and protective behaviours, presenting opportunities for targeted enhanced communication efforts in areas of Lyme disease emergence.


Assuntos
Doença de Lyme , Picadas de Carrapatos , Adulto , Humanos , Estudos Transversais , Ontário/epidemiologia , Conhecimentos, Atitudes e Prática em Saúde , Doença de Lyme/epidemiologia , Doença de Lyme/prevenção & controle , Picadas de Carrapatos/prevenção & controle , Percepção
3.
Environ Health Perspect ; 132(2): 27005, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38349724

RESUMO

BACKGROUND: Lyme disease (LD) is emerging in Canada owing to the range expansion of the tick vector Ixodes scapularis (I. scapularis). OBJECTIVES: Our objective was to estimate future LD incidence in Canada, and economic costs, for the 21st century with projected climate change. METHODS: Future regions of climatic suitability for I. scapularis were projected from temperature output of the North American Coordinated Regional Climate Downscaling Experiment regional climate model ensemble using greenhouse gas Representative Concentration Pathways (RCPs) 4.5 and 8.5. Once regions became climatically suitable for ticks, an algorithm derived from tick and LD case surveillance data projected subsequent increasing LD incidence. Three scenarios (optimistic, intermediate, and pessimistic) for maximum incidence at endemicity were selected based on LD surveillance, and underreporting estimates, from the United States. Health care and productivity cost estimates of LD cases were obtained from the literature. RESULTS: Projected annual LD cases for Canada ranged from 120,000 to >500,000 by 2050. Variation in incidence was mostly due to the maximum incidence at endemicity selected, with minor contributions from variations among climate models and RCPs. Projected annual costs were substantial, ranging from CA$0.5 billion to $2.0 billion a year by 2050. There was little difference in projected incidence and economic cost between RCPs, and from 2050 to 2100, because projected climate up to 2050 is similar for RCP4.5 and RCP8.5 (mitigation of greenhouse gas emissions captured in RCP4.5 does not impact climate before the 2050s) and by 2050 the most densely populated areas of the study region are projected to be climatically suitable for ticks. CONCLUSIONS: Future incidence and economic costs of LD in Canada are likely to be substantial, but uncertainties remain. Because densely populated areas of Canada are projected to become endemic under conservative climate change scenarios, mitigation of greenhouse gas emissions is unlikely to provide substantial health co-benefits for LD. https://doi.org/10.1289/EHP13759.


Assuntos
Gases de Efeito Estufa , Doença de Lyme , Humanos , Mudança Climática , Incidência , Doença de Lyme/epidemiologia , Canadá/epidemiologia
4.
Infect Dis Model ; 9(1): 278-297, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38328278

RESUMO

In Canada, the periodic circulation of West Nile Virus (WNV) is difficult to predict and, beyond climatic factors, appears to be related to the migratory movements of infected birds from the southern United States. This hypothesis has not yet been explored in a spatially distributed model. The main objective of this work was to develop a spatially explicit dynamic model for the transmission of WNV in Canada, that allows us to explore non-climate related hypotheses associated with WNV transmission. A Cellular Automata (CA) approach for multiple hosts (birds and humans) is used for a test region in eastern Ontario, Canada. The tool is designed to explore the role of host and vector spatial heterogeneity, host migration, and vector feeding preferences. We developed a spatialized compartmental SEIRDS-SEI model for WNV transmission with a study region divided into 4 km2 rectangular cells. We used 2010-2021 bird data from the eBird project and 2010-2019 mosquito data collected by Ontario Public Health to mimic bird and mosquito seasonal variation. We considered heterogeneous bird densities (high and low suitability areas) and homogeneous mosquito and human densities. In high suitability areas for birds, we identified 5 entry points for WNV-infected birds. We compared our simulations with pools of WNV-infected field collected mosquitoes. Simulations and sensitivity analyses were performed using MATLAB software. The results showed good correspondence between simulated and observed epidemics, supporting the validity of our model assumptions and calibration. Sensitivity analysis showed that a 5% increase or decrease in each parameter of our model except for the biting rate of bird by mosquito (c(B,M)) and mosquito natural mortality rate (dM), had a very limited effect on the total number of cases (newly infected birds and humans), prevalence peak, or date of occurrence. We demonstrate the utility of the CA approach for studying WNV transmission in a heterogeneous landscape with multiple hosts.

5.
J Med Virol ; 95(12): e29256, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38054533

RESUMO

The 2022 mpox outbreak predominantly impacted gay, bisexual, and other men who have sex with men (gbMSM). Two models were developed to support situational awareness and management decisions in Canada. A compartmental model characterized epidemic drivers at national/provincial levels, while an agent-based model (ABM) assessed municipal-level impacts of vaccination. The models were parameterized and calibrated using empirical case and vaccination data between 2022 and 2023. The compartmental model explored: (1) the epidemic trajectory through community transmission, (2) the potential for transmission among non-gbMSM, and (3) impacts of vaccination and the proportion of gbMSM contributing to disease transmission. The ABM incorporated sexual-contact data and modeled: (1) effects of vaccine uptake on disease dynamics, and (2) impacts of case importation on outbreak resurgence. The calibrated, compartmental model followed the trajectory of the epidemic, which peaked in July 2022, and died out in December 2022. Most cases occurred among gbMSM, and epidemic trajectories were not consistent with sustained transmission among non-gbMSM. The ABM suggested that unprioritized vaccination strategies could increase the outbreak size by 47%, and that consistent importation (≥5 cases per 10 000) is necessary for outbreak resurgence. These models can inform time-sensitive situational awareness and policy decisions for similar future outbreaks.


Assuntos
Minorias Sexuais e de Gênero , Masculino , Humanos , Homossexualidade Masculina , Canadá/epidemiologia , Surtos de Doenças
6.
Ecohealth ; 20(3): 249-262, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37985537

RESUMO

West Nile virus (WNV) is a mosquito-borne pathogen associated with uncommon but severe neurological complications in humans, especially among the elderly and immune-compromised. In Northeastern North America, the Culex pipiens/restuans complex and Aedes vexans are the two principal vector mosquito species/species groups of WNV. Using a 10-year surveillance dataset of WNV vector captures at 118 sites across an area of 40,000 km2 in Eastern Ontario, Canada, the ecological niches of Cx. pipiens/restuans and Aedes vexans were modeled by random forest analysis. Spatiotemporal clusters of WNV-positive mosquito pools were identified using Kulldorf's spatial scan statistic. The study region encompasses land cover types and climate representative of highly populated Southeastern Canada. We found highest vector habitat suitability in the eastern half of the study area, where temperatures are generally warmer (variable importance > 0.40) and residential and agricultural cropland cover is more prominent (variable importance > 0.25). We found spatiotemporal clusters of high WNV infection rates around the city of Ottawa in both mosquito vector species. These results support the previous literature in the same region and elsewhere suggesting areas surrounding highly populated areas are also high-risk areas for vector-borne zoonoses such as the WNV.


Assuntos
Aedes , Culex , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Idoso , Ontário/epidemiologia , Febre do Nilo Ocidental/epidemiologia , Ecossistema
7.
PLoS One ; 18(10): e0292741, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37815990

RESUMO

The outer surface protein C (OspC) of the agent of Lyme disease, Borrelia burgdorferi sensu stricto, is a major lipoprotein surface-expressed during early-phase human infections. Antibodies to OspC are used in serological diagnoses. This study explored the hypothesis that serological test sensitivity decreases as genetic similarity of ospC major groups (MGs) of infecting strains, and ospC A (the MG in the strain B31 used to prepare antigen for serodiagnosis assays) decreases. We used a previously published microarray dataset to compare serological reactivity to ospC A (measured as pixel intensity) versus reactivity to 22 other ospC MGs, within a population of 55 patients diagnosed by two-tier serological testing using B. burgdorferi s.s. strain B31 as antigen, in which the ospC MG is OspC A. The difference in reactivity of sera to ospC A and reactivity to each of the other 22 ospC MGs (termed 'reactivity difference') was the outcome variable in regression analysis in which genetic distance of the ospC MGs from ospC A was the explanatory variable. Genetic distance was computed for the whole ospC sequence, and 9 subsections, from Neighbour Joining phylogenetic trees of the 23 ospC MGs. Regression analysis was conducted using genetic distance for the full ospC sequence, and the subsections individually. There was a significant association between the reactivity difference and genetic distance of ospC MGs from ospC A: increased genetic distance reduced reactivity to OspC A. No single ospC subsection sequence fully explained the relationship between genetic distance and reactivity difference. An analysis of single nucleotide polymorphisms supported a biological explanation via specific amino acid modifications likely to change protein binding affinity. This adds support to the hypothesis that genetic diversity of B. burgdorferi s.s. (here specifically OspC) may impact serological diagnostic test performance. Further prospective studies are necessary to explore the clinical implications of these findings.


Assuntos
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Doença de Lyme , Humanos , Grupo Borrelia Burgdorferi/genética , Borrelia burgdorferi/genética , Filogenia , Estudos Prospectivos , Sequência de Aminoácidos , Antígenos de Bactérias/genética , Doença de Lyme/diagnóstico , Proteínas da Membrana Bacteriana Externa , Mutação
8.
PLoS One ; 18(8): e0290463, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37616268

RESUMO

Lyme disease is an emerging health threat in Canada due to the continued northward expansion of the main tick vector, Ixodes scapularis. It is of particular concern to populations living in expanding peri-urban areas where residential development and municipal climate change response impact neighbourhood structure and composition. The objective of this study was to estimate associations of socio-ecological characteristics with residential Lyme disease risk at the neighbourhood scale. We used Lyme disease case data for 2017-2020 reported for Ottawa, Ontario to determine where patients' residential property, or elsewhere within their neighbourhood, was the suspected site of tick exposure. Cases meeting this exposure definition (n = 118) were aggregated and linked to neighbourhood boundaries. We calculated landscape characteristics from composited and classified August 2018 PlanetScope satellite imagery. Negative binomial generalized linear models guided by a priori hypothesized relationships explored the association between hypothesized interactions of landscape structure and the outcome. Increases in median household income, the number of forest patches, the proportion of forested area, forest edge density, and mean forest patch size were associated with higher residential Lyme disease incidence at the neighbourhood scale, while increases in forest shape complexity and average distance to forest edge were associated with reduced incidence (P<0.001). Among Ottawa neighbourhoods, the combined effect of forest shape complexity and average forest patch size was associated with higher residential Lyme disease incidence (P<0.001). These findings suggest that Lyme disease risk in residential settings is associated with urban design elements. This is particularly relevant in urban centres where local ecological changes may impact the presence of emerging tick populations and how residents interact with tick habitat. Further research into the mechanistic underpinnings of these associations would be an asset to both urban development planning and public health management.


Assuntos
Ixodes , Doença de Lyme , Humanos , Animais , Ontário/epidemiologia , Fatores de Risco , Causalidade , Doença de Lyme/epidemiologia
9.
PLoS Pathog ; 19(8): e1011572, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37607182

RESUMO

Pathogen life history theory assumes a positive relationship between pathogen load in host tissues and pathogen transmission. Empirical evidence for this relationship is surprisingly rare due to the difficulty of measuring transmission for many pathogens. The comparative method, where a common host is experimentally infected with a set of pathogen strains, is a powerful approach for investigating the relationships between pathogen load and transmission. The validity of such experimental estimates of strain-specific transmission is greatly enhanced if they can predict the pathogen population strain structure in nature. Borrelia burgdorferi is a multi-strain, tick-borne spirochete that causes Lyme disease in North America. This study used 11 field-collected strains of B. burgdorferi, a rodent host (Mus musculus, C3H/HeJ) and its tick vector (Ixodes scapularis) to determine the relationship between pathogen load in host tissues and lifetime host-to-tick transmission (HTT). Mice were experimentally infected via tick bite with 1 of 11 strains. Lifetime HTT was measured by infesting mice with I. scapularis larval ticks on 3 separate occasions. The prevalence and abundance of the strains in the mouse tissues and the ticks were determined by qPCR. We used published databases to obtain estimates of the frequencies of these strains in wild I. scapularis tick populations. Spirochete loads in ticks and lifetime HTT varied significantly among the 11 strains of B. burgdorferi. Strains with higher spirochete loads in the host tissues were more likely to infect feeding larval ticks, which molted into nymphal ticks that had a higher probability of B. burgdorferi infection (i.e., higher HTT). Our laboratory-based estimates of lifetime HTT were predictive of the frequencies of these strains in wild I. scapularis populations. For B. burgdorferi, the strains that establish high abundance in host tissues and that have high lifetime transmission are the strains that are most common in nature.


Assuntos
Borrelia burgdorferi , Ixodes , Doença de Lyme , Animais , Camundongos , Camundongos Endogâmicos C3H , Larva
10.
Environ Monit Assess ; 195(7): 815, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286856

RESUMO

Mosquitoes are known vectors for viral diseases in Canada, and their distribution is driven by climate and land use. Despite that, future land-use changes have not yet been used as a driver in mosquito distribution models in North America. In this paper, we developed land-use change projections designed to address mosquito-borne disease (MBD) prediction in a 38 761 km2 area of Eastern Ontario. The landscape in the study area is marked by urbanization and intensive agriculture and hosts a diverse mosquito community. The Dyna-CLUE model was used to project land-use for three time horizons (2030, 2050, and 2070) based on historical trends (from 2014 to 2020) for water, forest, agriculture, and urban land uses. Five scenarios were generated to reflect urbanization, agricultural expansion, and natural areas. An ensemble of thirty simulations per scenario was run to account for land-use conversion uncertainty. The simulation closest to the average map generated was selected to represent the scenario. A concordance matrix generated using map pair analysis showed a good agreement between the simulated 2020 maps and 2020 observed map. By 2050, the most significant changes are predicted to occur mainly in the southeastern region's rural and forested areas. By 2070, high deforestation is expected in the central west. These results will be integrated into risk models predicting mosquito distribution to study the possibility of humans' increased exposure risk to MBDs.


Assuntos
Culicidae , Doenças Transmitidas por Vetores , Animais , Humanos , Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental , Mosquitos Vetores , Ontário
11.
Ticks Tick Borne Dis ; 14(4): 102161, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36996508

RESUMO

The geographic range of the blacklegged tick, Ixodes scapularis, is expanding northward from the United States into southern Canada, and studies suggest that the lone star tick, Amblyomma americanum, will follow suit. These tick species are vectors for many zoonotic pathogens, and their northward range expansion presents a serious threat to public health. Climate change (particularly increasing temperature) has been identified as an important driver permitting northward range expansion of blacklegged ticks, but the impacts of host movement, which is essential to tick dispersal into new climatically suitable regions, have received limited investigation. Here, a mechanistic movement model was applied to landscapes of eastern North America to explore 1) relationships between multiple ecological drivers and the speed of the northward invasion of blacklegged ticks infected with the causative agent of Lyme disease, Borrelia burgdorferi sensu stricto, and 2) its capacity to simulate the northward range expansion of infected blacklegged ticks and uninfected lone star ticks under theoretical scenarios of increasing temperature. Our results suggest that the attraction of migratory birds (long-distance tick dispersal hosts) to resource-rich areas during their spring migration and the mate-finding Allee effect in tick population dynamics are key drivers for the spread of infected blacklegged ticks. The modeled increases in temperature extended the climatically suitable areas of Canada for infected blacklegged ticks and uninfected lone star ticks towards higher latitudes by up to 31% and 1%, respectively, and with an average predicted speed of the range expansion reaching 61 km/year and 23 km/year, respectively. Differences in the projected spatial distribution patterns of these tick species were due to differences in climate envelopes of tick populations, as well as the availability and attractiveness of suitable habitats for migratory birds. Our results indicate that the northward invasion process of lone star ticks is primarily driven by local dispersal of resident terrestrial hosts, whereas that of blacklegged ticks is governed by long-distance migratory bird dispersal. The results also suggest that mechanistic movement models provide a powerful approach for predicting tick-borne disease risk patterns under complex scenarios of climate, socioeconomic and land use/land cover changes.


Assuntos
Borrelia burgdorferi , Ixodes , Doença de Lyme , Animais , Amblyomma , Doença de Lyme/epidemiologia , Canadá/epidemiologia , Aves
12.
J Med Virol ; 95(1): e28137, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36089815

RESUMO

To model the spread of monkeypox (MPX) in a metropolitan area for assessing the risk of possible outbreaks, and identifying essential public health measures to contain the virus spread. The animal reservoir is the key element in the modeling of zoonotic disease. Using a One Health approach, we model the spread of the MPX virus in humans considering potential animal hosts such as rodents (e.g., rats, mice, squirrels, chipmunks, etc.) and emphasize their role and transmission of the virus in a high-risk group, including gay and bisexual men-who-have-sex-with-men (gbMSM). From model and sensitivity analysis, we identify key public health factors and present scenarios under different transmission assumptions. We find that the MPX virus may spill over from gbMSM high-risk groups to broader populations if the efficiency of transmission increases in the higher-risk group. However, the risk of outbreak can be greatly reduced if at least 65% of symptomatic cases can be isolated and their contacts traced and quarantined. In addition, infections in an animal reservoir will exacerbate MPX transmission risk in the human population. Regions or communities with a higher proportion of gbMSM individuals need greater public health attention. Tracing and quarantine (or "effective quarantine" by postexposure vaccination) of contacts with MPX cases in high-risk groups would have a significant effect on controlling the spreading. Also, monitoring for animal infections would be prudent.


Assuntos
Minorias Sexuais e de Gênero , Masculino , Humanos , Animais , Camundongos , Ratos , /prevenção & controle , Homossexualidade Masculina , Vírus da Varíola dos Macacos , Zoonoses/epidemiologia , Zoonoses/prevenção & controle , Sciuridae
13.
Ticks Tick Borne Dis ; 14(2): 102083, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36435167

RESUMO

Lyme disease (LD) risk is emerging rapidly in Canada due to range expansion of its tick vectors, accelerated by climate change. The risk of contracting LD varies geographically due to variability in ecological characteristics that determine the hazard (the densities of infected host-seeking ticks) and vulnerability of the human population determined by their knowledge and adoption of preventive behaviors. Risk maps are commonly used to support public health decision-making on Lyme disease, but the ability of the human public to adopt preventive behaviors is rarely taken into account in their development, which represents a critical gap. The objective of this work was to improve LD risk mapping using an integrated social-behavioral and ecological approach to: (i) compute enhanced integrated risk maps for prioritization of interventions and (ii) develop a spatially-explicit assessment tool to examine the relative contribution of different risk factors. The study was carried out in the Estrie region located in southern Québec. The blacklegged tick, Ixodes scapularis, infected with the agent of LD is widespread in Estrie and as a result, regional LD incidence is the highest in the province. LD knowledge and behaviors in the population were measured in a cross-sectional health survey conducted in 2018 reaching 10,790 respondents in Estrie. These data were used to create an index for the social-behavioral component of risk in 2018. Local Empirical Bayes estimator technique were used to better quantify the spatial variance in the levels of adoption of LD preventive activities. For the ecological risk analysis, a tick abundance model was developed by integrating data from ongoing long-term tick surveillance programs from 2007 up to 2018. Social-behavioral and ecological components of the risk measures were combined to create vulnerability index maps and, with the addition of human population densities, prioritization index maps. Map predictions were validated by testing the association of high-risk areas with the current spatial distribution of human cases of LD and reported tick exposure. Our results demonstrated that social-behavioral and ecological components of LD risk have markedly different distributions within Estrie. The occurrence of human LD cases or reported tick exposure in a municipality was positively associated with tick density and the prioritization risk index (p < 0.001). This research is a second step towards a more comprehensive integrated LD risk assessment approach, examining social-behavioral risk factors that interact with ecological risk factors to influence the management of emerging tick-borne diseases, an approach that could be applied more widely to vector-borne and zoonotic diseases.


Assuntos
Ixodes , Doença de Lyme , Picadas de Carrapatos , Animais , Humanos , Estudos Transversais , Teorema de Bayes , Doença de Lyme/epidemiologia , Doença de Lyme/prevenção & controle , Canadá/epidemiologia
14.
Can Commun Dis Rep ; 49(6): 263-273, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38440772

RESUMO

Background: Vaccination has been a key part of Canada's coronavirus disease 2019 (COVID-19) pandemic response. Although the clinical benefits of vaccination are clear, an understanding of the population-level benefits of vaccination relative to the programmatic costs is of value. The objective of this article is to quantify the economic impact of COVID-19 vaccination in the Canadian population between December 2020 and March 2022. Methods: We conducted a model-based cost-benefit analysis of Canada's COVID-19 vaccination program. We used an epidemiological model to estimate the number of COVID-19 symptomatic cases, hospitalizations, post-COVID condition (PCC) cases, and deaths in the presence and absence of vaccination. Median, lower and upper 95% credible interval (95% CrI) outcome values from 100 model simulations were used to estimate the direct and indirect costs of illness, including the value of health. We used a societal perspective and a 1.5% discount rate. Results: We estimated that the costs of the vaccination program were far outweighed by the savings associated with averted infections and associated downstream consequences. Vaccination increased the net benefit by CAD $298.1 billion (95% CrI: 27.2-494.6) compared to the no vaccination counterfactual. The largest benefits were due to averted premature mortality, resulting in an estimated $222.0 billion (95% CrI: 31.2-379.0) benefit. Conclusion: Our model-based economic evaluation provides a retrospective assessment of COVID-19 vaccination during the first 16 months of the program in Canada and suggests that it was welfare-improving, considering the decreased hospitalizations and use of healthcare resources, deaths averted and lower morbidity from conditions such as PCC.

15.
Front Public Health ; 10: 1026489, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504958

RESUMO

Background: The monkeypox outbreak in non-endemic countries in recent months has led the World Health Organization (WHO) to declare a public health emergency of international concern (PHEIC). It is thought that festivals, parties, and other gatherings may have contributed to the outbreak. Methods: We considered a hypothetical metropolitan city and modeled the transmission of the monkeypox virus in humans in a high-risk group (HRG) and a low-risk group (LRG) using a Susceptible-Exposed-Infectious-Recovered (SEIR) model and incorporated gathering events. Model simulations assessed how the vaccination strategies combined with other public health measures can contribute to mitigating or halting outbreaks from mass gathering events. Results: The risk of a monkeypox outbreak was high when mass gathering events occurred in the absence of public health control measures. However, the outbreaks were controlled by isolating cases and vaccinating their close contacts. Furthermore, contact tracing, vaccinating, and isolating close contacts, if they can be implemented, were more effective for the containment of monkeypox transmission during summer gatherings than a broad vaccination campaign among HRG, when accounting for the low vaccination coverage in the overall population, and the time needed for the development of the immune responses. Reducing the number of attendees and effective contacts during the gathering could also prevent a burgeoning outbreak, as could restricting attendance through vaccination requirements. Conclusion: Monkeypox outbreaks following mass gatherings can be made less likely with some restrictions on either the number and density of attendees in the gathering or vaccination requirements. The ring vaccination strategy inoculating close contacts of confirmed cases may not be enough to prevent potential outbreaks; however, mass gatherings can be rendered less risky if that strategy is combined with public health measures, including identifying and isolating cases and contact tracing. Compliance with the community and promotion of awareness are also indispensable to containing the outbreak.


Assuntos
Surtos de Doenças , Vacinação , Humanos , Surtos de Doenças/prevenção & controle , Programas de Imunização , Saúde Pública , Busca de Comunicante
16.
Infect Dis Poverty ; 11(1): 104, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36192815

RESUMO

BACKGROUND: Countries that aimed for eliminating the cases of COVID-19 with test-trace-isolate policy are found to have lower infections, deaths, and better economic performance, compared with those that opted for other mitigation strategies. However, the continuous evolution of new strains has raised the question of whether COVID-19 eradication is still possible given the limited public health response capacity and fatigue of the epidemic. We aim to investigate the mechanism of the Zero-COVID policy on outbreak containment, and to explore the possibility of eradication of Omicron transmission using the citywide test-trace-isolate (CTTI) strategy. METHODS: We develop a compartmental model incorporating the CTTI Zero-COVID policy to understand how it contributes to the SARS-CoV-2 elimination. We employ our model to mimic the Delta outbreak in Fujian Province, China, from September 10 to October 9, 2021, and the Omicron outbreak in Jilin Province, China for the period from March 1 to April 1, 2022. Projections and sensitivity analyses were conducted using dynamical system and Latin Hypercube Sampling/ Partial Rank Correlation Coefficient (PRCC). RESULTS: Calibration results of the model estimate the Fujian Delta outbreak can end in 30 (95% confidence interval CI: 28-33) days, after 10 (95% CI: 9-11) rounds of citywide testing. The emerging Jilin Omicron outbreak may achieve zero COVID cases in 50 (95% CI: 41-57) days if supported with sufficient public health resources and population compliance, which shows the effectiveness of the CTTI Zero-COVID policy. CONCLUSIONS: The CTTI policy shows the capacity for the eradication of the Delta outbreaks and also the Omicron outbreaks. Nonetheless, the implementation of radical CTTI is challenging, which requires routine monitoring for early detection, adequate testing capacity, efficient contact tracing, and high isolation compliance, which constrain its benefits in regions with limited resources. Moreover, these challenges become even more acute in the face of more contagious variants with a high proportion of asymptomatic cases. Hence, in regions where CTTI is not possible, personal protection, public health control measures, and vaccination are indispensable for mitigating and exiting the COVID-19 pandemic.


Assuntos
COVID-19 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Busca de Comunicante/métodos , Humanos , Pandemias/prevenção & controle , Políticas , SARS-CoV-2
17.
Ticks Tick Borne Dis ; 13(6): 102040, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36137391

RESUMO

Public health management of Lyme disease (LD) is a dynamic challenge in Canada. Climate warming is driving the northward expansion of suitable habitat for the tick vector, Ixodes scapularis. Information about tick population establishment is used to inform the risk of LD but is challenged by sampling biases from surveillance data. Misclassifying areas as having no established tick population underestimates the LD risk classification. We used a logistic regression model at the municipal level to predict the probability of I. scapularis population establishment based on passive tick surveillance data during the period of 2010-2017 in southern Quebec. We tested for the effect of abiotic and biotic factors hypothesized to influence tick biology and ecology. Additional variables controlled for sampling biases in the passive surveillance data. In our final selected model, tick population establishment was positively associated with annual cumulative degree-days > 0°C, precipitation and deer density, and negatively associated with coniferous and mixed forest types. Sampling biases from passive tick surveillance were controlled for using municipal population size and public health instructions on tick submissions. The model performed well as indicated by an area under the curve (AUC) of 0.92, sensitivity of 86% and specificity of 81%. Our model enables prediction of I. scapularis population establishment in areas which lack data from passive tick surveillance and may improve the sensitivity of LD risk categorization in these areas. A more sensitive system of LD risk classification is important for increasing awareness and use of protective measures employed against ticks, and decreasing the morbidity associated with LD.

18.
Mol Ecol ; 31(22): 5872-5888, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36112076

RESUMO

Experimental infections with different pathogen strains give insight into pathogen life history traits. The purpose of the present study was to compare variation in tissue infection prevalence and spirochete abundance among strains of Borrelia burgdorferi in a rodent host (Mus musculus, C3H/HeJ). Male and female mice were experimentally infected via tick bite with one of 12 strains. Ear tissue biopsies were taken at days 29, 59 and 89 postinfection, and seven tissues were collected at necropsy. The presence and abundance of spirochetes in the mouse tissues were measured by quantitative polymerase chain reaction. To determine the frequencies of our strains in nature, their multilocus sequence types were matched to published data sets. For the infected mice, 56.6% of the tissues were infected with B. burgdorferi. The mean spirochete load in the mouse necropsy tissues varied 4.8-fold between the strains. The mean spirochete load in the ear tissue biopsies decreased rapidly over time for some strains. The percentage of infected tissues in male mice (65.4%) was significantly higher compared to female mice (50.5%). The mean spirochete load in the seven tissues was 1.5× higher in male mice compared to female mice; this male bias was 15.3× higher in the ventral skin. Across the 11 strains, the mean spirochete loads in the infected mouse tissues were positively correlated with the strain-specific frequencies in their tick vector populations. The study suggests that laboratory-based estimates of pathogen abundance in host tissues can predict the strain composition of this important tick-borne pathogen in nature.


Assuntos
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Ixodes , Doença de Lyme , Carrapatos , Masculino , Feminino , Camundongos , Animais , Borrelia burgdorferi/genética , Doença de Lyme/epidemiologia , Doença de Lyme/veterinária , Roedores , Prevalência , Camundongos Endogâmicos C3H
19.
J Med Entomol ; 59(6): 2080-2089, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-35980603

RESUMO

The development of interventions that reduce Lyme disease incidence remains a challenge. Reservoir-targeted approaches aiming to reduce tick densities or tick infection prevalence with Borrelia burgdorferi have emerged as promising ways to reduce the density of infected ticks. Acaricides of the isoxazoline family offer high potential for reducing infestation of ticks on small mammals as they have high efficacy at killing feeding ticks for a long period. Fluralaner baits were recently demonstrated as effective, in the laboratory, at killing Ixodes scapularis larvae infesting Peromyscus mice, the main reservoir for B. burgdorferi in northeastern North America. Here, effectiveness of this approach for reducing the infestation of small mammals by immature stages of I. scapularis was tested in a natural environment. Two densities of fluralaner baits (2.1 baits/1,000 m2 and 4.4 baits/1,000 m2) were used during three years in forest plots. The number of I. scapularis larvae and nymphs per mouse from treated and control plots were compared. Fluralaner baiting reduced the number of larvae per mouse by 68% (CI95: 51-79%) at 2.1 baits/1,000 m2 and by 86% (CI95: 77-92%) at 4.4 baits/1,000 m2. The number of nymphs per mouse was reduced by 72% (CI95: 22-90%) at 4.4 baits/1,000 m2 but was not significantly reduced at 2.1 baits/1,000 m2. Reduction of Peromyscus mouse infestation by immature stages of I. scapularis supports the hypothesis that an approach targeting reservoirs of B. burgdorferi with isoxazolines has the potential to reduce tick-borne disease risk by decreasing the density of infected ticks in the environment.


Assuntos
Borrelia burgdorferi , Ixodes , Ixodidae , Doença de Lyme , Doenças dos Roedores , Infestações por Carrapato , Animais , Peromyscus , Roedores , Arvicolinae , Larva , Infestações por Carrapato/prevenção & controle , Infestações por Carrapato/veterinária , Infestações por Carrapato/epidemiologia , Ninfa , Doença de Lyme/prevenção & controle , Doença de Lyme/epidemiologia , Doenças dos Roedores/prevenção & controle , Doenças dos Roedores/epidemiologia
20.
BMC Public Health ; 22(1): 736, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35418084

RESUMO

Currently, there is limited knowledge about socioeconomic, neighbourhood, and local ecological factors that contribute to the growing Lyme disease incidence in the province of Ontario, Canada. In this study, we sought to identify these factors that play an important role at the local scale, where people are encountering ticks in their communities. We used reported human Lyme disease case data and tick surveillance data submitted by the public from 2010-2017 to analyze trends in tick exposure, spatiotemporal clusters of infection using the spatial scan statistic and Local Moran's I statistic, and socioecological risk factors for Lyme disease using a multivariable negative binomial regression model. Data were analyzed at the smallest geographic unit, consisting of 400-700 individuals, for which census data are disseminated in Canada. We found significant heterogeneity in tick exposure patterns based on location of residence, with 65.2% of Lyme disease patients from the city of Ottawa reporting tick exposures outside their health unit of residence, compared to 86.1%-98.1% of patients from other, largely rural, health units, reporting peri-domestic exposures. We detected eight spatiotemporal clusters of human Lyme disease incidence in eastern Ontario, overlapping with three clusters of Borrelia burgdorferi-infected ticks. When adjusting for population counts, Lyme disease case counts increased with larger numbers of Borrelia burgdorferi-infected ticks submitted by the public, higher proportion of treed landcover, lower neighbourhood walkability due to fewer intersections, dwellings, and points of interest, as well as with regions of higher residential instability and lower ethnic concentration (Relative Risk [RR] = 1.25, 1.02, 0.67-0.04, 1.34, and 0.57, respectively, p < .0001). Our study shows that there are regional differences in tick exposure patterns in eastern Ontario and that multiple socioecological factors contribute to Lyme disease risk in this region.


Assuntos
Borrelia burgdorferi , Ixodes , Doença de Lyme , Picadas de Carrapatos , Animais , Humanos , Doença de Lyme/epidemiologia , Modelos Estatísticos , Ontário/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...